#include <iostream>
using namespace std;
#include <math.h>

#include "gmp.h"

#ifdef _MSC_VER
typedef unsigned __int64	Tu64;
#else
typedef unsigned long long	Tu64;
#endif

#ifdef _M_IX86

#define umulrem(z, x, y, m)	\
__asm	mov		eax, x	\
__asm	mul		y	\
__asm	div		m	\
__asm	mov		z, edx

#define umuladdrem(z, x, y, a, m)	\
__asm	mov		eax, x	\
__asm	mul		y	\
__asm	add		eax, a	\
__asm	adc		edx, 0	\
__asm	div		m	\
__asm	mov		z, edx

#else

#define umulrem(z, x, y, m)	\
	{	\
	z = (unsigned int)(x * (Tu64)y % m);	\
	}

#define umuladdrem(z, x, y, a, m)	\
	{	\
	z = (unsigned int)((x * (Tu64)y + a) % m);	\
	}

#endif

static bool IsPrime(unsigned int n)
{
	if (n < 2) return false;
	if (n < 4) return true;
	if (n % 2 == 0) return false;

	const unsigned int iMax = (int)sqrt(n) + 1;
	unsigned int i;
	for (i = 3; i <= iMax; i += 2)
		if (n % i == 0)
			return false;

	return true;
}

static unsigned int LargestPrimeFactor(unsigned int n)
{
	if (n < 2) return 1;

	unsigned int r = n, p;
	if (r % 2 == 0)
	{
		p = 2;
		do { r /= 2; } while (r % 2 == 0);
	}
	unsigned int i;
	for (i = 3; i <= r; i += 2)
	{
		if (r % i == 0)
		{
			p = i;
			do { r /= i; } while (r % i == 0);
		}
	}
	return p;
}

static unsigned int Powm(unsigned int n, unsigned int e, unsigned int m)
{
	unsigned int r = 1;
	unsigned int t = n % m;
	unsigned int i;
	for (i = e; i != 0; i /= 2)
	{
		if (i % 2 != 0)
		{
			umulrem(r, r, t, m);
		}
		umulrem(t, t, t, m);
	}
	return r;
}

static unsigned int Inv(unsigned int n, unsigned int m)
{
	unsigned int a = n, b = m;
	int u = 1, v = 0;
	do
	{
		const unsigned int q = a / b;

		const unsigned int t1 = a - q*b;
		a = b;
		b = t1;

		const int t2 = u - (int)q*v;
		u = v;
		v = t2;
	} while (b != 0);
	if (a != 1) u = 0;
	if (u < 0) u += m;
	return u;
}

class CPolyMod
{
protected:
	// (mod x^r - 1, n)
	const unsigned int m_r;
	const unsigned int m_n;
	unsigned int m_deg;
	unsigned int * mp_a;

private:
	CPolyMod():m_r(0), m_n(0) { mp_a = NULL; };

public:
	// default value is x
	CPolyMod(unsigned int r, unsigned int n)
		: m_r(r), m_n(n)
	{
		m_deg = 1;
		mp_a = new unsigned int [2];
		mp_a[0] = 0; mp_a[1] = 1;
	}

	CPolyMod(const CPolyMod & p)
		: m_r(p.m_r), m_n(p.m_n)
	{
		m_deg = p.m_deg;
		mp_a = new unsigned int [p.m_deg + 1];
		unsigned int i;
		for (i = 0; i <= p.m_deg; ++i)
			mp_a[i] = p.mp_a[i];
	}

	virtual ~CPolyMod()
	{
		if (mp_a != NULL)
			delete [] mp_a;
	}

private:
	void _polySquare()
	{
		const unsigned int * const p_a = mp_a;
		const unsigned int b = (unsigned int)((log(m_deg + 1) + 2 * log(m_n)) / log(2)) + 1;
		mpz_t x; mpz_init_set_ui(x, 0);
		unsigned int i;
		for (i = m_deg; i != 0; --i)
		{
			mpz_add_ui(x, x, p_a[i]);
			mpz_mul_2exp(x, x, b);
		}
		mpz_add_ui(x, x, p_a[0]);

		mpz_mul(x, x, x);

		const unsigned int deg = 2 * m_deg;
		unsigned int * const p_ar = new unsigned int [deg + 1];
		mpz_t t; mpz_init(t);
		for (i = 0; i <= deg; ++i)
		{
			mpz_fdiv_r_2exp(t, x, b);
			p_ar[i] = mpz_fdiv_r_ui(t, t, m_n);
			mpz_fdiv_q_2exp(x, x, b);
		}
		mpz_clear(t);

		mpz_clear(x);

		m_deg = deg;
		delete [] mp_a;
		mp_a = p_ar;
	}

	void _polyMul(const CPolyMod & p)
	{
		const unsigned int deg = m_deg;
		const unsigned int n = m_n;
		const unsigned int * const p_a = mp_a;

		const unsigned int degr = deg + p.m_deg;
		unsigned int * const p_ar = new unsigned int [degr + 1];
		unsigned int k;
		for (k = 0; k <= degr; ++k)
			p_ar[k] = 0;

		unsigned int j;
		for (j = 0; j <= p.m_deg; ++j)
		{
			const unsigned int x = p.mp_a[j];
			if (x != 0)
			{
				unsigned int i;
				for (i = 0; i <= deg; ++i)
				{
					const unsigned int y = p_a[i];
					unsigned int t = p_ar[j + i];
					umuladdrem(t, x, y, t, n);
					p_ar[j + i] = t;
				}
			}
		}

		m_deg = degr;
		delete [] mp_a;
		mp_a = p_ar;

	}

	void _Mod()
	{
		unsigned int deg = m_deg;
		unsigned int * const p_a = mp_a;
		while (deg >= m_r)
		{
			p_a[deg - m_r] += p_a[deg];
			if (p_a[deg - m_r] >= m_n) p_a[deg - m_r] -= m_n;
			--deg;

			while (p_a[deg] == 0) --deg;
		}
		m_deg = deg;
	}

	void _Norm()
	{
		const unsigned int deg = m_deg;
		const unsigned int n = m_n;
		unsigned int * const p_a = mp_a;
		if (p_a[deg] != 1)
		{
			const unsigned int y = Inv(p_a[deg], m_n);
			unsigned int i;
			for (i = 0; i <= deg; ++i)
			{
				unsigned int t = p_a[i];
				umulrem(t, t, y, n);
				p_a[i] = t;
			}
		}
	}

public:
	CPolyMod & operator = (const CPolyMod & p)
	{
		if (&p == this) return *this;
		m_deg = p.m_deg;
		delete [] mp_a;
		mp_a = new unsigned int [p.m_deg + 1];
		unsigned int i;
		for (i = 0; i <= p.m_deg; ++i)
			mp_a[i] = p.mp_a[i];
		return *this;
	}

	int operator != (const CPolyMod & p) const
	{
		if (m_deg != p.m_deg)
			return true;
		unsigned int i;
		for (i = 0; i <= m_deg; ++i)
			if (mp_a[i] != p.mp_a[i])
				return true;
		return false;
	}

	CPolyMod & operator += (unsigned int i)
	{
		const unsigned int t = i % m_n;
		mp_a[0] += t;
		if (mp_a[0] >= m_n) mp_a[0] -= m_n;
		return *this;
	}

	CPolyMod & operator -= (unsigned int i)
	{
		const unsigned int t = m_n - i % m_n;
		mp_a[0] += t;
		if (mp_a[0] >= m_n) mp_a[0] -= m_n;
		return *this;
	}

	CPolyMod Pow(unsigned int e) const
	{
		unsigned int er = 1;
		unsigned int j;
		for (j = e; j != 1; j /= 2)
		{
			er = 2 * er + (j % 2);
		}

		CPolyMod t(*this);
		unsigned int i;
		for (i = er; i != 1; i /= 2)
		{
			t._polySquare();
			t._Mod();
			if (i % 2 != 0)
			{
				t._polyMul(*this);
				t._Mod();
			}
		}
		t._Norm();
		return t;
	}
};

int main(int argc, char * argv[])
{
// AKS
// n=11701, r=11699, q=5849, s=2923
// n=1000000007, r=57287, q=28643, s=14311
//
// Bernstein
// n=349, r=347, q=173, s=140
// n=1000000007, r=3623, q=1811, s=1785

	unsigned int n0;
	cout << "n ? ";
	cin >> n0;

	unsigned int n;
	for (n = n0; true; n += 2)
	{
		bool b = false;
		unsigned int q, r, s;
		for (r = 3; r < n; r += 2)
		{
			if (IsPrime(r))
			{
				const unsigned int m = n % r;
				if (m == 0) break;
				q = LargestPrimeFactor(r - 1);
				if (Powm(m, (r - 1) / q, r) <= 1) continue;
/*
				// AKS
				if (q >= 4 * sqrt(r) * n.Log()/log(2))
				{
					s = (unsigned int)(2 * sqrt(r) * n.Log()/log(2));
					b = true;
					break;
				}
*/
				// Bernstein
				const double cMin = 2 * floor(sqrt(r)) * log(n);
				double c = 0;
				for (s = 1; s <= q; s++)
				{
					c += log(q + s - 1) - log(s);
					if (c >= cMin)
					{
						b = true;
						break;
					}
				}
				if (b) break;

			}
		}
		if (b)
		{
			cout << "n=" << n << ", r=" << r << ", q=" << q << ", s=" << s << "\r" << flush;;

			bool b = true;

			CPolyMod rPoly(r, n);				// x
			try
			{
				rPoly = rPoly.Pow(n);			// x^n
			}
			catch (...)
			{
				b = false;
			}
			if (b)
			{
				unsigned int a;
				for (a = 1; a <= s; ++a)
				{
					cout << "n=" << n << ", r=" << r << ", q=" << q << ", s=" << s << " " << a << "\r" << flush;;

					CPolyMod lPoly(r, n);		// x
					lPoly -= a;					// x - a
					try
					{
						lPoly = lPoly.Pow(n);	// (x - a)^n
					}
					catch (...)
					{
						b = false;
						break;
					}
					lPoly += a;					// (x - a)^n + a
					if (lPoly != rPoly)
					{
						b = false;
						break;
					}
				}
			}
			if (b)
				cout << "n=" << n << ", r=" << r << ", q=" << q << ", s=" << s << ", power of a prime." << endl;
			else
				cout << "n=" << n << ", r=" << r << ", q=" << q << ", s=" << s << ", composite." << endl;
		}
	}

	return 0;
}